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Abstract

The in situ Ni K-edge XAS study of the Ni(-diimine)Ch/methylalumoxane catalyst during 1-decene polymerization indicates the
formation of a complex with Ni(ll) atoms bonded to C and N atoms as well as a®iinteraction at ca. 4.02 A, which suggests the
formation of a pentacoordinated nickel complex as the active site. This geometry explains spectroscopic and magnetic properties of the
complexes and can play an important role in the polymerization of ethylene by late transition metal catalysts.
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1. Introduction square-planar Ni complexes exhibit one to three absorption
bands withe in the range 1 to 150 [4].

The nature of the interaction between transition metal = The magnetic susceptibilities of these systems give com-
complexes and alkylaluminum activators remains a relevantplementary information. Complek has a 21 + 0.1 BM
and hitherto unresolved question [1]. The academic and magnetic susceptibility and the systemiTIBA /ethylene
technological importance of olefin polymerization catalyzed 1.4 4+ 0.1 BM, which suggests that the tetrahedral geome-
by nickel complexes, as used in the Du Pont Versipol try observed for compleg changes upon addition of alky-
process [2], has rekindled interest in understanding this laluminum compounds and deviates from the square-planar
interaction. geometry. This behavior could be explained by incomplete

When Ni-diimine)Ch complexes are activated with transformation ofl into a square-planar complex, but this
alkylaluminum compounds, deeply colored solutions are does not explain the observed UV-visible spectra. These
formed. The UV-visible spectra of these systems have beendata explain the need for further characterization of the com-
reported by different groups [3]. For instance, when (1,4- plexes in order to understand the nature of the active species
bis(2,6-diisopropylphenyl)-acenaphtenediimine)Nid) is in nickel-catalyzed olefin polymerization reactions.
mixed with methylalumoxane (MAO) in the presence of  |n this paper, we describe a model for the coordination
ethylene, two bands, at 529 and 704 nm, with molar absorp-sphere of thed-diimine)NiCI2 olefin polymerization cata-
tivities (¢) of 2800 and 1840 Lmot'cm™, respectively,  |yst obtained by the X-ray absorption spectroscopy (XAS)
are present in the spectrum, but if triisobutylaluminum method. This technique gives information about the struc-
(TIBA) is used, bands at 538 and 709 nm, with molar ab- tyra| environment of specific elements present even in low
sorptivities of 1800 and 2730, respectively, are present. Suchamounts, as demonstrated by Corker and Evans in an ele-
molar absorptivities are too high to be attributabledtal gant application of XAS that shows the interactions between
transitions in tetra- or hexa-coordinated Ni(ll) complexes. It pjckel and alkylaluminum compounds [5]. The coordination
is well knowin that octahedral Ni(ll) complexes show three geometry of the nickel species is probed by the X-ray ab-
moderately intense bands ~ 10) and that tetrahedral or  gqrption near edge structure (XANES) method and the num-

ber and the nature of the nearest-neighbor atoms around the

~* Corresponding author. nickel core are calculated from the extended X-ray absorp-
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2. Methods
2.1. XAS measurements

XAS measurements at the nicki€ledge were performed
at the Laboratorio Nacional de Luz Sincrotron—LNLS
using the XAS beam line [7]. A “channel-cut” Si(111)
crystal monochromatized the collimated X-ray beam. The
XANES measurements were done using vertical slits of
0.5 mm placed before the monochromator providing an
energy resolution of 2.4 eV. The EXAFS measurements were
recorded using vertical slits of 1.5 mm. Data were recorded 8310 8340 8370 8400 8430 8460
in fluorescence mode, using an ionization chamber and a
Nal scintillator. The monochromator was calibrated at the
Ni K-edge, using a Ni metal foil. The energy step was Fig. 1. XANES spectra of the NK-edge of Ni(acag) (a), nickelg:-
0.8 eV in the XANES spectra and 2 eV in the EXAFS diimine)Ch 1 (b), and nickelg-diimine-Ch)/MAQ /1-decene (c).
spectra; the acquisition time was 2pgint. Due to the low
concentration of nickel in the sample, 15 acquisitions were features of a metal in a centrosymmetric site exhibit a
done and averaged to get a better signal-to-noise ratio. weak preedge and an intense main edge, as observed for
The EXAFS spectra were analyzed by a standard proce-the octahedral geometry. For a noncentrosymmetric site, an
dure of data reduction, using the Winxas program [8]: ex- increase in the preedge intensity occurs with a corresponding
traction of the EXAFS signay (k), Fourier transformation  decrease in the main edge, as is typical for tetrahedral
from 2.5 to 9.4 A1 using a Kaiser window. The refinement geometries.
of the shells was made by using phases and amplitudes de- The normalized XANES spectra at the Ki-edge for
rived from the FEFF code [9]. In the fitting procedure, the Ni(ll)-bearing model compounds are shown in Figs. la
number of free parameters did not exceed the number of in-and 1b. Fig. 1c corresponds to the spectrum obtained during
dependent data points given by the Nyquist theorem [10].  the 1-decene polymerization catalyzed byMAO. The
spectra present features labeled 1 (the preedge), 2 (the main
2.2. Polymerization procedure edge), and 3 (a multiple scattering resonance). Feature 3
is related to the geometry of the medium-range structure
The EXAFS polymerization sample was prepared inside around the investigated element [12].
a glove box by mixing chlorobenzene, 1-decene ([mono- In the Ni(acac) complex, the Ni(ll) atom is octahe-
mer]/[1] = 400), complexd (408 ppm), and MAO ([Al} dral [13] and the XANES (Fig. 1a) display a low-intensity
[1] = 10). The sample was mounted on a Teflon sample preedge (1s- 3d transition) and a high-intensity main edge
holder with Mylar windows. (1s — 4p transition). For the Ni-dimine)Ch complex1
These reaction conditions were chosen to ensure that thewhere the Ni(ll) atom is tetrahedral [14], the decrease in in-
XAS experiment was performed with the catalyst operating tensity of the main edge (feature 2) with a corresponding
under reaction conditions in which the conversion of the increase in the intensity of the preedge feature 1 corrobo-
olefin was limited to 75%, i.e., no total conversion was rates the changes expected for a noncentrosymmetric site.
attained even during long-time acquisition experiments. Furthermore, a square-planar geometry, not shown here, is
This leads to expensive experiments, since extremely longcharacterized by a strong preedge assignable to the 1s
acquisition times in the synchrotron ring was used, typically 4p, transition [15].
7to8h. The spectrum of the catalytic system, the mixture of
1/MAO /1-decene (Fig. 1c), has smothered features, which
suggests the presence of a more disordered system. How-
3. Resultsand discussion ever, it is still possible to distinguish the preedge and the
main edge, the heights of which are comparable with the
XANES spectra are dependent on the structural and thecharacteristics of Ni{-diimine)Chk (1). In the preedge re-
chemical environment of the investigated element and its gion a shoulder (Fig. 1, feature 4) appears, indicating a dis-
surroundings. The intensities of the preedge and the main-tortion in the coordination shell. The shift in Fig. 1c in the
edge features depend on the site symmetry [11]. Preedgecatalytic system compared to the standards indicates a dis-
features for theK-edge correspond to a transition from tinct organization around Ni in the catalytic system and in
1s to 3d states, which is forbidden in a centrosymmetric the reference samples.
environment. These transitions are allowed as a result of The clear distinction between 4-, 5-, and 6-coordinated Ni
the metal 3d—4p orbital mixing, metal 3d-ligand 2p orbital is obtained under high-resolution conditions, by analyzing
overlap, and site distortion. It is expected that the XANES the dependence of the position and the intensity of the
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preedge features [16]. In our case, we can only assert that The EXAFS data were fitted considering a model with
for the catalytic system, the lower intensity of the main edge the Ni(ll) atom surrounded by carbon and nitrogen atoms
compared with the octahedral geometry is an indication of in the first shell and chlorine atoms at a higher distance
lower coordination at the Ni atom and also that the absence(Fig. 2b, lines). According to the best fit, the coordination
of a high-intensity preedge peak eliminates the possibility shell has the contribution a¥c = 2.1+ 0.5 carbon atoms

of square-planar geometry. This means that the 6- and 4-at a distance oRc = 1.95+ 0.02 A and Ny = 2.0+ 0.5
coordinated square-planar configurations can be excludednitrogen atoms at a distance & = 2.3+ 0.02 A. The
Further information was obtained by EXAFS analysis. mean-square relative displacements are, respectivgly;

The EXAFS studies were experimentally complicated 0.00419 & and o2 = 0.00965 &. The second peak, at
by the low catalyst concentration and by the fact that the about 3.5 A, correspondsto a Ni—-Cl bond wig; = 1.7+ 1
measurements were performed on a liquid sample, whichat Rcj =4.02+0.1 A and(-,vé| =0.0176 A2 [17].
demands very long acquisition times and requires careful These EXAFS data show that the active species can
choice of the type of olefin and the concentrations of all cat- be best described as a complex liRe(Scheme 1), with
alytic system components in order for XAS measurements a nickel core containing the-diimine ligand, the alkyl
to be performed during the polymerization reaction (maxi- growing chain, the coordinated olefin, and a chloride atom
mum 1-decene conversion of 75%). Even under such con-bounded to the nickel atom in the first coordination shell.
ditions, well-defined EXAFS spectra have been obtained, asThis chloride atom is probably a part of an organoaluminate
shown in Fig. 2. The EXAFS signal of the catalyst (Fig. 2a) moiety (R would be AI(OR’)3, with R’ being a part of the
is dominated by the frequency due to the coordination shell. MAO cocatalyst) [18]. The chloride atom is a part of a bridge
The shoulders marked by arrows are indicative of a higher of the type Ni—CI-Al, in an interaction that would give a
frequency due to the contribution of next-nearest neighbors. zwiterionic complex.

The FT-EXAFS signal (Fig. 2b, dots) shows a main peak Itcan be speculated that the relatively low carbon number
near 1.5 A with a shoulder at 2 A and a second peak at aboutvalue that has been observeil + 0.5) is the result of the
3.5A. contribution of a fraction of the nickel species with a low
coordination number, and those formed by the insertion of
the coordinated olefin in the nickel-carbon bond during the
a chain-growth process. EXAFS is not able to prove it, since it
is not able to distinguish between different types of nickel—
carbon bonds and can only see the average signal due to all
~ - 7 species present in the cell.

< Similar EXAFS spectra were obtained using TiBA in-
stead of MAO, showing that very similar active species were
formed with these cocatalysts.

The proposed 5-coordinated nickel intermediate explains
the UV-visible data, since spin-allowed bands (higtal-

T T - . ues) are expected for 5-coordinated nickel complexes [19].
6 ., 8 10 This is also the case with the magnetic susceptibility data,
K (A ) since high-spin complexes are expected to be formed in the
presence of nitrogen-bonding ligands.

Fig. 2. (@) EXAFS signal NiK-edge of in situl/MAO/1-decene.
The shoulders (marked by arrows) on the main oscillating contribution
reflect the presence of next-nearest neighbors. (b) Modulus of the Fourier
transform with the imaginary part (dots, experimental data; lines, fitted
data). Scheme 1.
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The presence of the organoaluminate anion as a ligand

and not as a counteranion, as previously proposed, does not

change dramatically the nature of the active species. In this
description, the catalyst still is an alkyl-olefin-nickel com-
plex that is active in polymerization of olefins by sequen-
tial insertion into the nickel-alkyl bond. The model gives a
better description of the active site and gives an explanation
for well-known spectroscopic properties that is incompatible
with the previous descriptions of these nickel(ll) complexes.
It can help promote understanding of the need of MAQO for
nickel-catalyzed-olefin polymerization.

Nickel intermediates interacting with alkylaluminum
moieties were previously proposed by Corker and Evans [5],
who suggested that the interaction NAl may be one sta-
bilizing factor for the nickel (11) organomettalics, perhapsre-
tarding B-hydride or reductive elimination. It seems that the
Ni- - -Cl interaction plays an important role, previously un-
derestimated, in the polymerization of olefins.
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